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TORS ION OF ELASTIC BODIES BOUNDED BY COORDINATE SURFACES OF TOROIDAL AND 
SPHER I CAL COORDINATE SYSTEMS* 

V.S. PROTSENKO, A.I. SOLOV'YEV and V.V. TSYMBALYUK 

On the basis of relationships between particular solutions of the torsion 
equation in toroidal and spherical coordinates, the Fourier method is 
applied to the solution of torsion contact problems for elastic bodies 
bounded by coordinate surfaces of toroidal and spherical coordinate systems. 

1. Let a, PI cp; a, a, 9; r, 0, w 13, 2. cp be toroidal, spherical, and cylindrical coordinates 
defined by the formulas /l-3/ 

x=ahfl"shacoscp, y=%qshasincp,, z=&'sinfi 

x=ah,,*shacoscp, y=&*shasincp, z=&*sina 

5 = r sin 8 cos cp, y = rsin 8 sin cp, 2 = rcos 8 

x = p co9 cp, y = p sin cp, 2 =z(a>O,O<a,p,r<oo, 

--oo<Z<~, -ncB, a,<n, O<cpc2n, O<e<n, 
I+ = vch a + cos & h,, = fcha - cos a) 

_ 

The single displacement component different from zero I(= u, in problems of the pure 
torsion of elastic bodies of revolution satisfies the Eq.(l, 2, 4) 

Relationships between the particular solutions of (1.11 in spherical and toroidal 
coordinates results directly from the folldwing equalities connecting the particular solutions 
of the Laplace equation in these coordinates (the factor cosmcp or sin mp is omitted on both 
sides of each equality) 
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h,PY,z+i,(chc)~h TCJ = 
e 

D;::,,,,, (T) ( +)n’i+m+2 P;b+,+l (cm 0) 

n=o 

@>a) 

(G) Pk+mcl 
P2+?n+1 (cos e) = h, r, (- WU:%+I, nQ&. x 

n=--m 

(cha)i sin a(~ 

(c>O) 

h,P$,, (ch a) i sin na = 
k=o 

@>a) 

hoPZ:_l,, (ch a) i sin no = 

(- l).+l~b:T:,+l,~($~+m”P~+~+l(~ose) 

(O,<r<a) 
Here 

($0 (q = pm P+‘j* (n + mu 
(2m),(n__m)f &F(V2+i~+m9m- 

n; 2m + 1; 2) 

2m + 1; 2) 

a$ = f ismm (- 1)” F (‘1% - n + m, m-s; 

2m + 1; 2) 
b’m’= (- l)mi‘-"'2m+"r r ('/a - II + m) 
8. n (2mY P (I,2 _ n __) F (% - a + m, m - S; 

2m + 1; 2) 

n ~(a,--n;c;z)=~ (C),mf 

(a), (-- n), Zm 

m=o 

@) = r(m+a) 
m r (a) 

=a(a+I)...(a+m-1) 

Pn” (4 are the associated Legendre polynomials, Pvm (z), Qy”’ (z) are associated Legendre functions 
of the first and second kind, m--GO+ m-kkO;k,m,s=~O,1,2,-;..;P(a,-n; c; a) is the 
hypergeometric polynomial in s, and (a), is the Pochhammer symbol /3, 5/. 

The functions r (Vn + ir + m)lI’ (V, + ir - m), C,,m (T), D n(m)(~) are real for real values of z 
where 

The equalities (1.2) are obtained by solving special boundary value problems for the 
Laplace equation by the method described in /6/. For m = 1 they enable us to investigate a 
number of torsion problems of a) a sphere OQr<A with a cavity I%< B < B*(t& <OO;B'$;); 
b) a body fir< fl< PI (fil< 0, fia>O) with a spherical cavity O< r< R; c) asphere \ r, 
with a toroidal cavity a>, a,> 0; d) a space with two cavities, one of which is bounded by 
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a sphere r= R and the other by the surface of a torus a = ao, and certain other bodies 
bounded by coordinate surfaces of toroidal and spherical coordinate systems. 

2. We will examine the problem of the equilibrium of 1) a truncated sphere O,<B<<Bo 
(O( PO< n) with a hemispherical depression O< r<,<, O< 0 < nl2 clamped along the surface 

B = Bo and twisted by a rigid stamp coupled to the surface r = R, OS0 < n/2: 2) a hemisphere 
O< r<R, D,<e < nl2 with a segmental depression O< 8 < PO (O-K &<fi) clamped along the 
surface r = R, 0<0 <s/2 and twisted by a rigid stamp coupled to the surface B = 30; 31 
a hemisphere O,< r<R, O<%<d2 with the toroidal depression O<ao<a<~,O<a<n 
clamped along the surface r =R, 0<8,<d2 and twisted by a rigid stamp coupled to the surface 
of a torus along the section a = a(, OQ a,<n. 

The following boundary conditions correspond to these problems 

1) ulpf&=O, UI+=R=EP, ~~z~o=o (R<P<4 

2) Ulo=,&==Ep, uIr4=0, -qz-o=O @<P<W 

3) EGjcr=a.=ep* mfr=a=O* $l_)=O 

( 
OGp<ath+ aoth+<p<R) 

(E is the angle of stamp rotation). 
We represent the general solution of problem 1) as the sum of two components 

each of which identically satisfies the condition 

(au/ 82) Iz=a = 0 (R<p< a) 

Using the equalities 

and satisfying the remaining conditions of l), we arrive at the relationships 

B a=--~+l~A(r)~~l(T)dr+F, (n=O,1,2,....) 
0 

F, = --eR, F,, = O(n = 1,2,....) (h = Rla< 1, 

0 < PO < 4 

Eliminating the function A(z) and setting 

we obtain an infinite system of linear algebraic equations to determine the unknown coefficients 

b, 

k=k~c&.fW~+fn (s='A&2,....) (24 

fn=y'Z; fn=O (n=i,2, . ..). k=Rja, O<&t\<n 



316 

For 0 < h (6 = min (1, tg f&/2) the inequality 

(2.2) 

holds. 

Settino 

and taking account of the inequality 

(f $$& (7) *t (7’) q < s ***w d7i *k’(7) d7 (n, k = 0,1,2,. . . .) 
0 0 0 

we have the following estimates (~,,,,,,@a) >O, cmm(L 60) >O) 

V2,k (PO) <<v, (IJO) Ykk (PO)? & (L PO) <c,,(h, PO) Ckk (L PO) 

Therefore, to prove inequality (2.2), it is sufficient to see that 

By using the formulas /5/ 

c0 (-qnr(n-p) E 4 r (-PI 
8°F (- n, b; -p; I) F (- n, 8; - p; 5) = 

?I=0 

(1+r)‘+b+B(1+g-~z)“(1+~--rg)-8F b,L’;-Pi- (l+r__a:;;*+r__sT) 1 

(2.3) 

(2.4) 

(for p = -3, z = 5 = 2, b = J/z + ir, p = V8 - 17, s= +h2,0<h<i) we represent the left-hand side of 
inequality (2.3) as the sum of two components 

2P m 4h' 
g1@9 PO) =m s 

(++VO oh7 b- Do) 

ch.ec,ch~s x F 8/a + ir,S/z- i7; 3; m d7 
[ 3 
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- (7’ + ‘Id ch 7 (n - 60) 2P 
s 

4?"a 
gz(L PO) = (i___h')S chrb,,chm, x F s/z + ir, s/2 - iq 3: - (1-- 

I 
d7 

(I 

Using the equality /5/ 

r (v-m + i)rnl Py"(5)= (- 2)-mr (v.+ m + 1)(1- .r)m'aF(v + m + 1,m-- v; 1+ m;1/2 - T 7 (2.5) 

(for v=-‘,l+i7,m=l,z=1-_,- f<z<i) and the obvious estimate 

we will have (e,=4arctgh,0<I<6,0<Bo~n) 

Setting y= 1, a = 'In + iz, fi = IIt - ir, 6 = -4Aa(1-Ah')-' in the Gauss recursion formula /5-J/ 

y(v + 1)IF (a, B; y; 6) - F (a, B; y + ‘1; Dl - e3 (a + 1, fJ + 1; (2.6) 
v+-2; 6)=0 

and V= --'/,+i~, I= 1- 26, m= 0.1 in the inequality /3/ 

p 
V 

m(z) = r (V + m + 1) (z* - Vf2 1-z 

b r(V-m+ii) ZrnM! 
F m-vv,m+v+i;m+l;~ ( 1 

( larg (z Jr 1) 1 <n; m = 0, 1, 2, . . . .) 



and also taking account of the functional relationship /3/ 

F(a,B;r;5)=(~-_)Y-a-BF(y--a,y-_B;r;5)(Iarg(1-i)I<n) 

we represent the quantity gs(&, &,) in the form (O<@o<n) 
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(2.7) 

It fallows from this equality and the asymptotic behaviour of the function P”&ir(chao) 

as T - 00 that I gp(a, t% I < 00 (0 < ?. < It. 
Consequently, for O<h<6 we have 

It follows from inequality (2.2) and the fact that (f,)0m belongs to the Hilbert space 

of number sequences 1, that for almost al.1 values hE (0, 6) a solution of the infinite system 
(2.1) exists in I,, isunique, and can be found by the method of reduction /8, 9/. The 
constraint O<h<6 on the possible values of the parameter h is related in a natural way 
to the formulation of the problem under consideration and means that the hemisphere r = R, 
O<e< n/2 lies entirely in the domain O< fi<&_ 

The contact stresses rrgi = G(h/& - u/r) (r = R, 0 < f3,,< n) aswellasthe relationship 
between the torque I applied to the stamp and the angle e are determined directly in terms 
of the solution of the infinite system (2.1) 

We analyse problem 
of the half-space z> 0 
boundary conditions 

Using the estimate 

resulting from the integral representation 

1) further for the limit case $*=a, which corresponds to torsion 
with the hemispherical depression O<r,<R, O~,<~zd2 under the 

UJr=R=ERsine (o<e<+), -glz4=o 

(R<P<d ~lz==o=o (P>U) 

and the inequality 

51’ v---- i- l--t (i-2t)~kdt<*(2kn+i) (k = 0, 1, 2, . . , ,) 
0 

it can be seen that for n = 0,1,2,... 

This inequality and the fact that the sequence {f&m belongs to the space 1, assures 

single-valued solvability of the infinite system (2.1) in 1, for fin = JC, O<h< Le and the 
applicability of the method of successive approximations /a, 9/. 

Limiting ourselves to terms of order &* inclusive in the solution of the infinite system 
(2.1), we will have 

b, = f,, 11 -I- d,,P + d,,*ka + dooshe + 0 (J.‘“)l (2.8) 
bx = f,dd.~ L1 + ad? -t 0 (a% b, = fod,,a’ [i + 0 (I.“)1 
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b, = f,,d,,h8 II i- 0 (h3)l, b, = 0 (h”“+3) (n = 4, 5, . . . .) 

4 
doe = 3n, 

41/i? 
ho = __, 15n 

dzo = q , d30= g, fo=I/?- 

We express the shear stresses 'czq = G(&d&)(z = O,p>a) directly in 

of the infinite system '(2.1) and we investigate their behaviour as p -+ a. 
Taking account of the equality 

we find 

m 

rzc I.+,,p>a = -p c a---)"* ‘0 s 
rA(z) shmP_ ‘l,,+ir (ch a) dz 

Cl 

Now using the relationships 

A (z) = - & 2 &haktaC$+~ (t), Bk= C---i) r+leR 

k=0 
f/(ac+iN~+2) bk 

SF’ r,,+ir (ch a) = - ; [@L/,-IT (ch a) - Q$.+i, @h 41 

and applying the residue theorem to evaluate the integral 

terms of the solution 

we obtain the following formula to determine the shear stresses on the clamped part z = 0, p>a 

of the boundary of the body under consideration 

- c Ge(ch a - I)‘/1 2 1/(2k + 1) (2k + 2) hakcsb,& (CC) 
k=o 

~k(a)~~(-I)m(2m+l~~(l-~m,-2Zk;3;2)Q~1(chu)x 
nl=o 

( cha= s) 

As p-a (cc-tc~) these stresses have an integrable singularity of the form (pa 

6-w 

ayl.: 

Limiting ourselves to terms of the order of hg inclusive in (2.9) and using the asymptotic 

solution (2.8) of the infinite system (2.1) forfi,, =a~, we find 

The equality 

sha 
(-l)“‘(2m+1)Q,,,‘(chcz)=- - 

(cha+ 1)a (a>(J) 
m==O 

resulting from the Heine formula /5/ 

(5 -4-r = 5_(2m + 1) PEl(4 &I (5) (12 + Vz" - 1 I<l f + 1/5a - 1 I) 

is used to obtain this result. 
Let us note again t? case PO = SC/~ corresponding to the problem of the torsion of a 

hollow hemisphere R<r,<a, O,<e,< n/2 by a circular stamp with hemispherical base O,<r<R, 
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O,<@ <n/T& It can be seen that in this case 

c,=O (nfk), c,,,=h*"+J (n, k=O, i,2,...) 

and, therefore, problem 1) has a closed solution for &,=sciZ 

!, _ as1/2- 
o-a8--RJ* b,=O(n=1,2, . . . . ), A(t)=21/2:$$&& 

R% (08 - S’) 
u= ,rc,+_llJ) sin0 (R<r<a, R<a, 0,<0,<3d/2) 

We represent the general solution of problem 2) as the sum of two components 

each of which satisfies the condition (i%~i&)]~=~ = @ (a<p<R) identically. 
Using the equalities 

- ~lq&, 1 ch lrT& “’ P’s,,+,, (ch a)& 
0 

satisfying the remaining conditions of 21, and setting 

we obtain, after some reduction, an infinite system of linear algebraic equations (a = Rla< 
1, O<U,<X) 

(2.10) 

F(- 2k, sjr+ it; 3; 2)dr 

fn (h, ari) = 4 1/(2n f 1) (2n + 2p+*yno (00) 

Because the matrices IIc&((h, u,)II and 11 ~(h, fiO)jl agree, apart from the notation of the 
parameters therein, and the sequence {f,,(h, a,)} is an elementofthe spaces 1, and E,, the 
infinite system (2.10) possesses the same properties as the infinite system (2.1). It is 
merely necessary to replace the parameters R,a, @,, by a,R, u. respectively, in the formulation 
of the properties for the latter. We note that in the problems considered there is a complete 
analogy even for the investigation of the shear stresses. 

We will represent the general solution of problem 3) as the sum of two components 

each of which satisfies the condition (8u/&),=, = 0 (O<ppath(a&), ac&(a&)<p< R) 
identically. 

Using the equalities 

h,P:_s,, (ch cc) cm RU 
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($)Ik+lP:k+* - (cos e) = h, x (- l)“a%~, nQL,, (ch 4~0s ~KJ 
n=-co 

(a>O) 
Qln_$,, (ch a) = Q&, (ch a), &)+I, -,I = a$+~, TI 

satisfying the remaining conditions of 31, and setting 

a,= 2aafl _sBn(n2_+(nP_+a,- ;;;;;+;I;;; ly" 
s 

we arrive at an infinite system of linear algebraic equations 

h,= 5 pnm(h, aO)h,+h(ao) (n=O, 1, k...) 

P~(~~~~=~ll~(tb)rp,(~)~o~(~) (m=O, 1, 2. * * 4 

Pm (h 4 = f I/a (4 b (4 %ll (V 

(m=O, 1, 2, . ..( n=l, 2, . ..) 

(2.11) 

hak+* (2k + 1) (2k + 2) F (Q - n, - 2k; 3; 2) x 

F (% - m, - 2k; 3; 2) 

qo (ml) = 1/$0 (Rl), qn (ao) = 2 f/9, (ao) (n = 1, 2, . * 4 

Applying (2.4), and then the functional relationships /3/ 

F (a, p; y; 2) = (1 - z)ra+F (y - a, y - I% Y; Z) 

F(a, p; y; 2)==(1 -s)QF(a~ ,Y- B; Y; "-) s--l 

(laro(i-s)I<s) 

we will have an explicit expression for the quantities %m 0.) In terms of the hypergeometric 
function 

%m@) =~(~~+mF[s/l+n,Pls+m;3; .&I+ 

&(~*)“-“P[a/~--n, %+m 3; +] 

Therefore, the matrix elements of the infinite system (2.11) are also expressed in 
explicit form. 

For O<h< th (&!)(a,> 0) the matrix IIp,,,,,(k, a,)11 satisfies the condition 

SJ_ Pim (b ao) < cQ 

Actually, by setting 

cx(z) = Pk+"1/(zk+i)(2k+2) P("/t- z, - 2k 3: 2) 

in the Cauchy inequality 

(2.12) 

we obtain the following estimates (P~~(&,Q)~o): 

Pi,(kuo)< P,,(kaa)p_(&bo) (n,m=O,i,%...) 

Therefore, to prove the inequality (2.12) it is sufficient to show that for O<h<th(ad2) 

(2.43) 

By using (2.5)-(2.7) we have (&=4arctgh) 
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It hence follows that the last series converges for all 1~(0,1). Now using the inequality 

(n>/i, O<h<i) 

resulting from the definition of the hypergeometric series /3, 5/, the representation of the 
Legendre function P# (z) in terms of the hypergeometric function /3, 5/ 

and the relationship P_,,_l(~)= P,,(Z), we obtain the following estimate 

Zchc,P,+~ (oh2&)(a1=2 arthh) 

Taking account of the asymptotic behaviour of the toroidal functions PE,,,(cha), QE,,,,(cha) 
this estimate indeed proves condition (2.13) for O<li<th(d2) (O<a,<ao). 

It follows from inequality (2.12) and the fact that {~,,(uo))~OD belongs to the space 1, 
that for almost all values of hi (0, th(aJ2)) the solution of the infinite system (2.11) 
exists in I, is unique, and can be found bythemethod of reduction. 

We note that the problem of the torsion of a half-space z> 0 with hemispherical 
(O<r< R, O< 0 <n/2) and torodial (0< a,,< CL< 00, O,< a< n) depressions by stamps coupled 
to the surfaces of these depressions also reduces to an infinite system of linear algebraic 

equations with the matrices II Pnm (L %)I1 @=R/a). 
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